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The fundamental equations of equilibrium quantum statistical mechanics 
are derived in the context of a measure-theoretic approach to the quantum 
mechanical ergodic problem. The method employed is an extension, to 
quantum mechanical systems, of the techniques developed by R. M. Lewis 
for establishing the foundations of classical statistical mechanics. The exis- 
tence of a complete set of commuting observables is assumed, but no 
reference is made a priori to probability or statistical ensembles. Expressions 
for infinite-time averages in the microcanonical, canonical, and grand 
canonical ensembles are developed which reduce to conventional quantum 
statistical mechanics for systems in equilibrium when the total energy is the 
only conserved quantity. No attempt is made to extend the formalism at this 
time to deal with the difficult problem of the approach to equilibrium. 
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1. I N T R O D U C T I O N  

In  th is  p a p e r  an  a p p r o a c h  to  t he  f o u n d a t i o n s  o f  e q u i l i b r i u m  q u a n t u m  

s ta t i s t ica l  m e c h a n i c s  is p r e s e n t e d .  T h e  resu l t s  o b t a i n e d  are  a r e f i n e m e n t  a n d  
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extension of some earlier work (1) on the ergodic problem in quantum 
mechanics and are established in close correspondence with the elegant and 
general formulation of classical statistical mechanics given by Lewis. (2~'2 
Thus the point of view taken here is fundamental rather than pragmatic and 
holds to the basic tenet that the purpose of statistical mechanics, for physical 
systems in states of equilibrium, is to calculate time averages of experimentally 
measurable properties. For  this reason no ideas of ensembles or probability 
are introduced a priori. Instead the ensemble theory appears solely as a useful 
mathematical device which evolves from a restricted, but physically important 
solution of the ergodic problem and which permits the evaluation of time 
averages without previous integration of the quantum mechanical equation of 
motion. 

In attacking the nontrivial problem of finding correspondents of Lewis' 
theorems, we have been led to develop a mathematical structure and physical 
perspective which are significantly different from what has been considered 
previously for quantum mechanical systemsJ 4,5~ The primitive notion is 
that of state, a ray in an appropriate Hilbert space, rather than observable, 
and the concomitant mathematical apparatus is measure theory (6~ rather than 
operator algebra. This basic tack makes possible the development of equi- 
librium quantum statistical mechanics along lines of reasoning which are 
parallel with those employed for classical mechanical systems, after due 
attention has been paid to the differences between quantum and classical 
dynamics. A possible additional benefit of this method is that the purely 
dynamical analysis is not a sample of the theory of Banach algebras, but 
remains a part of the conventional mathematical structure of quantum 
mechanics. (7~ It should be emphasized, however, that the operator-algebra 
approach can offer a valid alternative to our method; in particular the recent 
work of Moyal ca ~ achieves some results which are close in spirit to those we 
present in Section 2. 

In the sections which follow we shall present a solution of the ergodic 
problem in quantum mechanics and give derivations of the principal en- 
semble distributions in statistical mechanics. The equations for the latter 
reproduce conventional expressions in the density matrix formulation of 
quantum statistical mechanics whenever the complete set of observables for a 
physical system comprises only the total energy. Otherwise the equations are 
valid quite generally for any finite complete set and, because of a convenient 
vector notation, can be made to appear formally similar to the conventional 
expressions. 

It should not be forgotten that the results to be obtained here can apply 
strictly only to quantum mechanical systems containing a large but finite 

2 A summary of Lewis' paper is given by Truesdell. C3~ 



Foundations of the Quantum Statistics of Systems in Equilibrium 323 

number N of interacting particles included in a macroscopic but bounded 
volume V of physical space. This restriction is a necessary prerequisite to the 
use of a density matrix formalism and is essential as well if we are to eschew 
the nontrivial mathematical questions which pertain to systems conceived 
from the very beginning to be in the thermodynamic limit/9~ On the other 
hand, we should not expect the results we obtain to have a strict physical 
significance in thermodynamics without some consideration of their behavior 
as N--~ 0% V-+ 0% with N/Vfini te .  The point of view to be taken here is in 
agreement with common practice and with the general procedure suggested 
by Emch(9~: The ergodic averages of observables are calculated for finite N 
and V, then the thermodynamic limit is taken and the existence of the 
ensemble distributions is ascertained. This method appears to serve quite well 
in a general study of equilibrium phenomena, although it may in fact not be 
adequate for certain broader investigations concerned with the explicit 
irreversible behavior of quantum systems. For these studies physical con- 
ditions may dictate that time averages of observables be calculated either 
simultaneously with the passage to the thermodynamic limit, or afterward. 
Therefore at present the point of view in this paper should be considered 
judiciously with respect to its possible application in other areas of quantum 
ergodic theory. 

With regard to the latter parts of our program, we can point out im- 
mediately that the rigorous, positive results presented by Ruelle(l~ on the 
thermodynamic limit for quantum ensembles apply as well to the generalized 
ensembles considered in this paper with only slight modifications. In par- 
ticular, it is required that the complete invariant vector rather than just the 
Hamiltonian operator for an N-particle system be stable (in the sense of 
Ruelle), and that the particle interactions be tempered (again as defined by 
Ruelle), and that the microcanonical distribution deal not with trace pairs 
whose image under the Hamiltonian operator is stationary, but rather with 
those whose image under the complete invariant vector is stationary. These 
conditions will be seen to be quite straightforward to impose on our results. 
We shall always assume that they hold, with no loss of generality in our 
arguments, in order that the expressions we derive wilt have meaning for 
infinite quantum mechanical systems. For all the well-known mathematical 
details of the passage from the finite N, Vcase we consider here to the thermo- 
dynamic limit, the clear exposition in Ruelle's book ~i~ should be consulted. 

2. E R G O D I C  T H E O R E M  

An assembly of N interacting particles is associated in quantum mechan- 
ics (7~ with a complex, separable Hilbert space ~f~ which comprises square- 
summable state vectors r N, s N) with support in R ~N. Each one of the N 
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pairs (r, s) in the argument of r locates a particle in physical space and pre- 
scribes a value of its spin projection, respectively. If  the assembly consists of 
identical particles, a closed subspace of ~ must be chosen to represent the 
totality of possible states. This subspace will contain only eigenvectors of the 
transposition operator (1~ 

P(~j~r r~, si,..., rj ,  sj,...) =- r rj,  sj,..., r~, & .... ) 

belonging to the eigenvalue + 1 or to the eigenvalue - 1. 
Strictly, the Hilbert space of quantum mechanical states is a family of 

equivalence classes, with equivalence being "equality almost everywhere" 
on R 4N. Besides this mathematical subtlety there is the important and well- 
known (see, e.g., Ref. 12) physical equivalence relation defined by 

for any pair of nonzero vectors in ~'~. Relation (1) partitions a f  into disjoint 
sets called rays. At any chosen instant of time a state of an assembly of 
interacting particles is represented uniquely by a ray in ~ .  We shall denote 
the ray containing the state vector r by the symbol ~F. The class of all rays in 

(or in a suitable closed subspace of J~) will be denoted N. 
Now let us put N'  - ~ w ~ ,  where ~ is the empty set, and consider the 

class ag of all subsets of ~ ' .  ag surely contains the empty set and is closed 
under complementation and the taking of countable unions. Thus d is a 
e-algebra and, by definition, the pair (~ ' ,  ~r is a measurable space. It is a 
simple matter to show further that the pair (f~, ~ ' )  -- (N' x ~ ' ,  d x d )  
is also a measurable space (Ref. 6, w Theorem F). This space is to be the 
correspondent of the pair (II, 2, ~ which appears in classical statistical 
mechanics, (2~ where 1I is phase space and 2,' is the class of Lebesgue- 
measurable sets in II. The correspondent of Lebesgue measure on II (the 
Liouville measure) can be presented after stating the following definition. 

Definition 1. A nonempty element of ~, (~F, q5), is called a trace pair 
if, for any r ~ ~F and any cp E qS, we have r ,-~ ~o. 

Let/* be a function from the elements o f s ~  into the set of extended non- 
negative integers such that 

fcardinality of the subset of trace pairs in 
F,(A x B) = JA x B, if this subset is finite 

[ .+  oo if the subset of trace pairs is infinite 
(2) 

where A x B EJr It is evident that /, I> 0 and /x(~) = 0. Moreover, if 
Oh= 1 (A x B) ~ = ~ for some sequence of rectangles in ~g, then the rule for 
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adding integers specifies that 

/~ A x B)~ = /z((A x B)~) 
r ~ = l  

If  one of the rectangles in the sequence contains an infinite subset of trace 
pairs, the above equality is necessarily satisfied. It follows that/z is a measure 
function on s and that (f~, ~d{,/z) is a measure space. 

The triple (f2, ~ ,  tz) is the correspondent of the measure space (II, 2;0 ~), 
where ~ is Lebesgue measure. The measured quantities in classical mechanics 
are represented by real-valued, measurable functions on (II, ~o, ~) which are 
called "phase fundtions." The correspondent of the phase function on II is 
the Hilbert function (1) on ~2. Similarly to the phase function, the Hilbert 
function in a given case is restricted to a subset of f~ established in close 
relation with the physical character of the assembly of particles which it is to 
describe. This character is determined by the Hamiltonian operator Ho v 
which, through its spectral decomposition, induces a convenient partition of 

into closed subspaces, generating an orthogonal basis for ~ .  This basis is 
in one-to-one correspondence with a certain subset of ~ which will be denoted 
~H. Thus ~i~ = {~Fx}, where ~Fa is the equivalence class belonging to the 
energy eigenvalue Ea of Hop.3 Bearing this in mind, we state the following. 

Definition 2. A Hilbert function is an elementary function from the 
squares ~ x ~H -~ f ~  into C 1, defined by 

fo((~, q))) = ~ Okxik((Ui ", ~)) (3) 
(k} 

In Eq. (3) 

0, (tF, O) ~ Mk 

M~ = {6V~, ~V.) e ~ :  fo(('e~, 'e~,)) = 0~} 

and the index set {k} identifies all distinct values of the Hilbert function fo. 
The operator 009 is any quantum mechanical observable (including Hov) 
which has physical meaning for the system of particles under consideration. 
The complex-valued quantity Ok is computed with the help of elements of the 
orthogonal basis set generated by Hov. Thus the image of (2~ under fo is 
included in the set of all matrix elements of Oov relative to the basis {r 

Every Hilbert function can be associated with a continuous parameter t, 
which represents the time variable, by specifying that 

Cat = Urea, Ca a ~F A E N~, t ~ R 1 (4) 

3 We do not assume that the Ea are all distinct. 
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where Ut is a strongly continuous, unitary operator whose Hermitian genera- 
tor is Hop. A natural generalization of Eq. (4) to the elements of s  is ob- 
tained by writing 

T~('V~, 'V~,) - ({U,4,~}, { V ~ , } )  (5) 

The set {Tt} is, then, a single-parameter group of transformations from 
x N onto itself and serves as the correspondent of  the "solut ion opera- 

t o r "  which maps phase space into itself in classical mechanics. (2~ The exis- 
tence of Tt and its group properties is guaranteed by the axioms of Schr6- 
dinger quantum mechanics (Ref. 7, Chapter IV). This, in turn, makes possible 
the following important  lemma. 

Lemma 1. (f~, J{, ~, Tt) is a measure-preserving space. 

Proof. 1. For every fixed t, Tt -1 exists and Tf-ZM = {(~F, ~):  
Tt(~F, o~) E M} is included in J {  if M e ~ '  because Tt has the group property 
and is onto. 

2. The measure /x is invariant under the transformations Tt. This 
assertion is true fundamentally because the axioms of Schr6dinger quantum 
mechanics establish the existence of the unitary time-evolution operator Ut 
which necessarily preserves the scalar product on ~ x ~ .  Therefore 
Tt(~, ~)  is a trace pair if and only if (tF, O) is a trace pair and the number of  
trace pairs must remain invariant under Tt.4 

3. Tt(T, q~) is a measurable transformation from (R 1 x f2, L x ~ ' )  
into (f~, J~), where L is the class of Lebesgue-measurable sets in R 1. Since 
Tt(~, c~) is a strongly continuous transformation from (R z x f~) onto f2, 
it certainly is measurable from (R ~ x [2, ~ x ~ ,  ~B x t0 into (f~, Jr tz), 
where N ~ L is the class of Borel-measurable sets in R a and ~B is the re- 
striction of Lebesgue measure on the real line to ~ (Ref. 7, p. 81). Now 
consider the set 

IT-~(M)]t  - [(Tt(~, O))-~], = {(W, qb): Tt(tF, ~ )~  M ~ J/Z} 

which is the section (Ref. 6, w determined by t, of the set T -  ~(M) c R~ x 
s Because IT-Z(M)] t = Tt-I(M) and/x is invariant under Tt, every section 
has/x measure zero if/x(M) = 0. It  follows (Ref. 6, w that ~B • tz(M) = 0 
and therefore (2~ that T,(tF, ~)  is a measurable transformation. 

The three foregoing statements show that Tt is measure-preserving and 
measurable, which proves the lemma. 

The ideas in this section have been introduced so as to prepare the way 
for an ergodic theorem. It  is accepted at the outset that such a theorem is 

4 This result is the correspondent of the well-known invariance of Liouville measure 
under the classical mechanical solution operator (Liouville's theorem). 
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relevant to experiment in two ways. First, because the process of  measurement 
does not produce instantaneous values of  observables, but rather time- 
averaged ones, it is germane to equilibrium phenomena to study the infinite- 
time average 

io fo((~F, *))*  --- Lira ( l /T)  fo(Tt( 'f ,  q~)) dt (6) 
T--+~ 

Since the values of  a Hilbert function are always of the form 

(~bat, Oop~ba,t) (r Oop~ba,) - i ( E a .  - Ea)t 

where h is Dirac's constant, they are strictly periodic in the time and are 
easily integrated as in Eq. (6). The result is 

fo ( (~ ,  0 ) )  | = ~ O~~ , (I))) (7) 
u} 

where 

o #  = [(r OopCm,)/llCmll llCm'll] , m, m ' =  1 . . . . .  Lz (8) 

J~(] = {(lY~tm , ~lm'): f i t((1rl rn, l'I2lm')) = Et, fo((~F{ ~, ~rlm')) = O ] ~ }  (9) 

and the index set {j} labels distinct values of the time average. Second, it is 
clear from Eqs. (8) and (9) that 

Ttf0((W, q)))o~ = f0(Tt(~, q)))o~ = f0((tF, q)))~ 

Some of these invariant values of  the infinite-time average are complex. 
However, they have no bearing on experiment since they constitute the image 
of a set of  t~-measure zero. 5 This fact leads further to the conclusion that 

= f fo((W, *)) d~ (10) 
JM 

where M is any element of  rid having finite/~ measure. Equations (7) and (10) 
are the principal results of  this section, which we may state as the following: 

5 It is important to note here the often overlooked point that any solution of the ergodic 
problem will contain a residual statistical aspect; namely that the sets of zero measure 
are of' no physical significance. This fact has been discussed in the context of classical 
dynamics by Jancel (Ref. 5, p. 15). 
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Ergodie Theorem. Let (f~, J/,/~, :It) be a measure-preserving space and 
letfo((tF, ~)) be a Hilbert function on (s Jd). Then the infinite-time average 

f0((tF, ap))| = Lira (l/T) f0(Tt(tF, ap)) dt 
T--~ oo *'0 

exists, is real-valued, and is invariant under T t except on sets of/~-measure 
zero. If/z(M) (M e J4) is finite, then fo is integrable and 

3. THE MICROC:ANONICAL DISTRIBUTION 

A fundamental assumption in quantum mechanics is that, for any iso- 
lated assembly of interacting particles, there exists a finite set of commuting 
observables, called a complete set, in terms of which every compatible 
observable for the assembly can be expressed as a function (Ref. 7, Chapter 
IV, w This important notion may be brought into the present context 
through the following definition. 

Definition 3. If  (f2, J/,/z,  Tt) is a measure-preserving space and C1 .... , Cn 
is a set of measurable Hilbert functions which are invariant under Tt, then 

eft 'F, 09)) = {C1,..., C d  

is a complete invariant vector if every measurable invariant Hilbert function is 
a measurable function from (RL ~ " )  to (R 1, B) of C1,..., C, except on sets of 
~-measure zero. 

We shall henceforth assume that C has been determined for any physical 
system of interest. Then, noting that the infinite-time average of a Hilbert 
function is an invariant, we may invoke Definition 3 and write 

f0((W, q~))~o = F[C((W, q)))] (11) 

on sets of finite ~-measure, where F is a Borel-measurable function from 
(R ", ~")  to (R 1, B). It follows from Eq. (10) that 

FtC(('F, *))I : ( fo(('F, *)) 
i i ]  

C -  I(B) C -  I(B) 

where B e ~ and/z(C- I(B)) < oo. If  we now put 

.(B) ---- ~(C- ~(B)) (13) 

as the measure induced in R ~ by/x on f~, we have 

f F[C((W, *))] d/z = i~ F[C] d. (14) 
C" I(B) 
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since F is Borel measurable. Therefore, by Eqs. (12) and (14), 

fBF[C] dv = f fo((~,(P))d/~ (15) 
C-  I(B) 

This expression may be used to obtain an equation for F[C] (and therefore 
fo ~) by the application of a result from the theory of nets: (2) Let 

I~[K] ={C: [C~- K~] ~< ~}, i - -  1,...,n 

where K = {/(1 .... , K,} e R ~, S = {31,..., 3n} is a very small interval in R ", 
and only the real'values of the C~ are considered. Then 

F[K]=Lim[o_,o fi, Fdv/v(MK])J (16) 
18[ ] 

Physically ISl should exhibit a nonzero least value because of uncertainty 
relations (e.g., the energy-time uncertainty relation). However, we may 
consider Eq. (16) to apply in a limiting sense, just as is done in classical 
mechanics, (2~ and derive from Eqs. (11), (13), and (15) the result 

f~ ; M J (17) 

except on sets of t~-measure zero, where 

c -  ~(K) = {('r, ' r):  C ~ ,  ~)  = K} 

and 

M0[K] = {(W, tF): [C~(T, tF) - K~ I ~< 8~}, i = 1,..., n 

Equation (17) is a generalization of the microcanonical distribution in quan- 
tum statistical mechanics. It states that the infinite-time average of a Hilbert 
function, on sets of nonvanishing/z-measure, may be calculated as an average 
over an ensemble in which equal a priori probability has been assigned to 
every trace pair whose image under C lies in a vanishingly small interval 
about the value K. Under the condition that C = f m  the total energy, Eq. 
(17) reduces to the conventional microcanonical distribution. Whenever the 
complete invariant vector C possesses a classical mechanical analog Eq. (17) 
becomes, in the classical limit, Lewis' generalization of the microcanonical 
distribution, (2) as has been shown previously. (~) 

4. THE C A N O N I C A L  D I S T R I B U T I O N  

A consideration of assemblies of interacting particles which are not 
isolated from one another poses essentially only problems of a technical 
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nature in extending the results of Section 3. To begin a careful formulation 
of the theory of the canonical ensemble, we name the quintuple (f~, ~ ,  Is, TL, 
C) a complete space, following Lewis, (2) and prescribe the following. 

Definition 4. The complete spaces (f2', iN', is', T~', C') and (fU, ~ " ,  
is", Tt", C") are in weak interaction if there exists a complete space 
(f2, d{, is, T~, C) such that ~ = f~' x f2", dg = rid" x ~g", is = is' x is", and 

c( ( 'v ,  q,)) - c ( ( ' e ' ,  ~ ' ,  ,r- ,  ~")) = c' ( ( 'v' ,  , ' ) )  + c"((,v", o~-)) 

In the special case that C' and C" each is simply the energy of the re- 
spective system of particles it describes, the definition of "weak interaction" 
above is quite the same as what is used conventionally to establish the 
relation between two systems in purely thermal contact (see, e.g., Ref. 13, 
Chapter 4). Generally, of course, one of these two systems must be a heat 
reservoir if the concept of temperature is to be given a precise meaning. This 
requirement suggests the need for the following definition. 

Definition 5. (f2", de'", is", Tt", C") >> (f2', J l ' ,  is'. Tt', C') if the two com- 
plete spaces are in weak interaction and if: 

(a) There exist measure functions p' and p" such that (f~', dr", p', Tt', C') 
and (fU, d{", p ' ,  T/, C") are also complete spaces in weak interaction, 
wi thp ' ( f~ ' )  = p"(f~)  = 1. 

(b) There exists a vector E in R"  such that, except for sets in f~u' ofp'- 
measure zero, 

p"{(~F", q)"): IC~'((~F ", ~")) + C~' - E~ 1 <~ 3~} = const (18) 

for sufficiently small ISl. 

According to Definition 5, a reservoir has the distinguishing character- 
istics of being in weak interaction with another system and of being " large"  
by comparison with that system in the sense that, for a fixed total invariant 
vector, the (probability) measure of the states of the reservoir is constant, 
regardless of what may be the state of the adjacent system. These features are 
consonant with the usual physical concept of a reservoir (18) and they provide 
for a straightforward application of Eq. (17) to Hilbert functions on the 
product space (f2, d/l,p, Tt, C), where p = p' x p". If we call the constant 
value ofp"  in Eq. (18) p"[C'((~F ', q5'))] for the sake of clarity, we have 

fo(C- I(E))~~ = Lira ff~ q~'))p"[C'(('e', *'))] @' ~-.o p(Ms[E]) (19) 

by Eq. (17), where f0 is a Hilbert function on ~2~' alone, 

Ms[E] = {(P,  W ) :  I C~ - E,I <. 8d, i = 1 . . . .  , n 
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and the integral over the appropriate set in f~i has been carried out in the 
numerator of Eq. (17). It is to be understood that for small enough IS I the 
integral remaining in Eq. (19) is over the entirety of Y2H'. It follows that 
p"[C'((tF ', q~'))] = p, then, and (19) becomes 

fo(C-I(E))~ = ( fo((W', ~')) dp' (20) .) a 

This expression provides for the calculation of the infinite-time average of a 
Hilbert function, for a system in contact with a reservoir, on the points 
(W, q)) for which C((tF, qb)) = E. 

Now we must'consider the problem of finding the explicit forms of the 
measures p' and p". It is evident that Eq. (20) describes a generalization of 
what one expects from a canonical distribution and therefore that p'  ulti- 
mately should be proportional to a generalization of the Boltzmann factor. 
To see that this indeed is the case, we may begin by citing a lemma due to 
Lewis(2): 

Lemma 2. Let {Tt} be a family of measure-preserving transformations 
on an arbitrary measure space (f2, ~ , /z) .  Let q~(7) be nonnegative and integ- 
rable on (f2, Jr For every M ~ ~ '  let 

q(M) = fM ~o(~,) dlz 

be a measure on (~2, J / ) .  Then {Tt} is also a family of measure-preserving 
transformations on (f2, ~ ' ,  q) if and only if ~o is invariant under T~ on 

(a,  Jz, t0. 

It follows from Lemrna 2 that if (f2', ~" , / z ' ,  Tt', C') and (f2", J/Z",/z", 
T", C") are complete spaces, the spaces (~2', J{ ' ,  q', Tt', C') and (~2", ~ ' " ,  q", 
T~", C") likewise will be complete if and only if q~' and ~o", respectively, are 
invariant Hilbert functions on (f2', J//', ~') and (fY', ~'",/z") (except on sets 
of/x-measure zero). But this means 

q~'((W', ~')) = F'[C'((W', dg'))] 

~-((,v-, ~")) = F"[c"(('e", ~"))] 

where the right-hand sides are Borel-measurable functions on R". Therefore 

q'(M')q"(M") = fz~, F'[C'] d~'~, M" F"[C"] d~" 

= fu, • M,, F'[C']F"[C"] dI~ 

= q(M'  • M") = q(M) (21) 
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where tz is the product measure on the product space ( f ~ , J { ) =  
(~2' x f2", Jg '  x M/z'") and M'  x M" is any rectangle in ~)H- f2~' x ~)i~ 
for which q(M) is finite. Since the two systems do interact, 6 the density 
~o((~F, (b)) is the same function of C as are ~o' and ~o" of C' and C": 

q(M) = fM V[C]d/z (22) 

The necessary and sufficient condition that (~, Jg, q, Tt, C) be a complete 
space comes from Eqs. (21) and (22) as 

F'[C'].F"[C"] = F [ C l  = F [ C '  + C"] 

The most general ~olution of this equation is 

F'[C'] = a' exp( -  [3-C') (23) 

F"[C"] = a" exp(-[~.C"), F[C] = a'a" exp(-[3.C) 

where [3 is an arbitrary vector in R ~ and the a's are arbitrary, nonnegative 
numbers. Now let us define 

Z'(13) ~ __~, exp(-  13. C') d~' 

Z"([3) ~ j a , ,  exp( -  [~. C") d/z" 

on the subsets D' and D", respectively, in R ~ containing all the [~ for which 
the integrals above are finite. If  we set 

1 fM exp( -  13. C') d/~', m '  c f~r~' p'(M') -~ Z'([3--) , 
(24) 

p"t(M/l)~Ztlt.~ |\l,,~)dM exp(--[3.C'/) dbd ', M " c  ~H 

we have constructed measures which maintain (~2', ./~',p'. T/, C') and 
(~", ../~", p", T~", C") as complete spaces in weak interaction. Moreover, if 
D" = D' vt ;~, we can write 

Z'(})Z"(}) = f exp(-[3-C)dr* Z([3) 
H 

and 

p(M) = [1/Z ([3)] { exp( - [3. C) d/~ (25) 
aM 

The weak, but nonvanishing, interaction is essential to the validity of Eq. (22). Other- 
wise, we would have some G[C] r F[C] as the density in q(M) corresponding to the 
physical independence of the spaces (~', M(') and (f2", Jr'"). 
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Equations (24) permit Eq. (20) to be rewritten in the form 

fo(C - Z(E~)) ~o = [Z'([3)] -~ f a f o ( ( W  , @')) e x p ( -  [~. C') d/x' (26) 

Equation (26) is the desired generalization of the canonical distribution. It 
states that the infinite-time average of a Hilbert function describing a physical 
system in weak interaction with a reservoir may be calculated (on sets of 
nonzero /,-measure, such that C = E~) as an average over an ensemble in 
which the probability p'  given in Eqs. (24) has been assigned to every set in 
f~u' whose image under C is E~. The vector 13 can be shown ~2~ to provide a 
criterion for equilibrium between the reservoir and the system in contact 
with it. In the special case that C is equal to the total energy of the reservoir 
plus system, 13 reduces to the familiar temperature modulus ( k T )  -~ of the 
Boltzmann factor. The function Z([3) is then the canonical partition function. 

5. THE G R A N D  C A N O N I C A L  D I S T R I B U T I O N  

l[n order to describe a physical system which can exchange matter with 
its surroundings, we must generalize the space f2 to the space F = 
U , ~ x  f2~, where ~ is the space of all vectors n = {nl,..., nk} denoting 
particular compositions of an assembly containing k different kinds of 
particle. The resulting measurable space is then ( r ,  5a), where ~a = 
{P: P ~ f~, ~ dr is the class of all subsets in P. For every P e G' we define 

m ( e )  = n (27) 
aE.A/" 

where/x~ is given by Eq. (2). Equation (27) defines a measure on the sets o f ~  
since 

m Pl = /X,~(P, ~ f2,) = m ( P 3  
heM,"  l l 

for all sets {P~: OF=I P~ = ~} in ~. In the same spirit we define the strongly 
continuous group of unitary transformations {&} on the elements of I ~ by 
setting St - T~, for each (~a ~, qea,~ ) e (~'u x ~ ) ~  ~- f ~  c f2. The proof 
that (P, ~, m, &) is a measure-preserving space follows as a direct generaliza- 
tion of t h e p r o o f  of Lemma 1. 

Now let us write n((~F, @)) as the vector-valued function which maps 
from P into rig" such that 

n((W', @)) = otherwise (28) 

Then we may define the vector 

C((~ '~, @=)) = {n, C~}, gn c rig" (29) 
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where C, is a complete invariant vector for an assembly of particles of com- 
position n (Definition 3). It is clear that Eq. (29) prescribes a set of Hilbert 
functions, for each f2,~ c p, which has the property of completeness in the 
sense of Definition 3. Therefore (P, ~, m, St, C) is a complete space. 

If  (I'", ~" ,  m", St", C") >> (F', ~ ' ,  m',  St', C'), we may apply the reason- 
ing of Section 4 to show that 

fo(C-l(Ei3, N~)) ~ = [z'([3, ~)]-1 ~ [exp(-g..n')] 
. t  E,~/" 

x ( fo((~"', qb"')) exp(-- [3.C.') d/z.' (30) 
% 

z'([3, ~.) = ~ exp( -~ .n ' )  
. ' E J V "  

x ( [exp(-[3.C,')] dtz~' (31) 
Jn 

and Ex = {/xl ,...,/xk} is an arbitrary vector in RL Equation (30) is a generaliza- 
tion of the grand canonical distribution. It states that the infinite-time average 
of a Hilbert function describing a physical system in weak interaction with a 
particle reservoir is equal (on sets of nonzero ~-measure such that C,'  + 
C~ = E~ and n' + n" = N~) to an average over an ensemble in which the 
probability 

p ' (P ' )  =- [1/z'([3, ~)] ~" exp(-~t.n ')  

x t exp( -  [3. C,') d/x,' (32) 
JM I1 t 

has been assigned to every set in Unf2,a whose image under C is {E~, N~}. 
[Note that in Eq. (32) P '  = U,M~'  ~ U, f2~i~ and ~p ,  = { n ' : M , '  ~ P'}.] 
In the particular case that C,'  is the total energy Eq. (31) is the same as the 
conventional grand partition function, with ~t comprising the chemical 
potentials of the k different constituents in the system under consideration. 
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